

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA MINAS GERAIS CAMPUS BETIM

EDITAL 149/2014 CONCURSO PÚBLICO DE PROVAS E TÍTULOS

PROVA DISCURSIVA DE CONHECIMENTOS ESPECÍFICOS Data: 14/12/2014

CARGO/ÁREA: 826 e 838 QUÍMICA 02

Só abra quando autorizado.

Duração da Prova: 04:00 horas improrrogáveis A PROVA DEVERÁ SER RESOLVIDA À TINTA AZUL OU PRETA

At A Comment of the C

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA MINAS GERAIS CAMPUS BETIM

EDITAL 149/2014 CONCURSO PÚBLICO DE PROVAS E TÍTULOS

PROVA DISCURSIVA DE CONHECIMENTOS ESPECÍFICOS Data: 14/12/2014 CARCO/ÁREA: 826 e 838/OLÚMICA 02

	CARGO/ÁREA: 826 e 838/QUÍMICA 02																
Noi	Nome do candidato:																
			1			1	1			1		1	1				
Nº (Nº de inscrição:																
RG																	
CP	F																
A aa	Aggingturgs																

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL MINAS GERAIS CAMPUS BETIM CONCURSO PÚBLICO DE PROVAS E TÍTULOS – EDITAL № 149/2014

Cargo: PROFESSOR QUÍMICA 02

Data: 14 / DEZEMBRO / 2014 8:00 h Valor desta prova: 100 pontos Número de questões: 10 (dez) / Número de páginas da prova: 18 (dezoito)

ORIENTAÇÕES

- I. Não abra esta prova sem ser autorizado;
- II. Preste atenção nas informações orientadas pelos aplicadores;
- III. Este caderno possui 10 questões DISCURSIVAS de valores iguais;
- IV. A duração desta prova é de quatro horas improrrogáveis;
- V. Depois de autorizado o início da prova confira se não está faltando alguma folha ou questão e informe ao aplicador;
- VI. Não faça nenhuma marca, sinal ou indicativo em alguma folha da prova na qual isto possa identificá-lo, sob o risco de ter sua prova anulada;
- VII. Preencha as respostas somente utilizando caneta preta ou azul;
- VIII. Somente serão avaliadas respostas escritas dentro do retângulo preto, qualquer resposta fora desta área não será corrigida.
- IX. Por questões de segurança: Retire a bateria do celular, retire os relógios e guarde qualquer aparelho eletrônico. Qualquer som, vibração pode ser interpretado como tentativa de fraude do candidato;
- X. Não deixe de escrever seu nome e assinar, somente, na folha de identificação;
- XI. O candidato só pode se retirar depois de uma hora de início da prova;
- XII. O mínimo para aprovação desta prova é de 60,0 pontos;

CRONOGRAMA

- I. A tarde as 14:00 h ocorrerá a prova OBJETIVA, neste mesmo local, o candidato que não prestar a prova OBJETIVA será eliminado do concurso.
- II. Dia 15-12-2014 publicação do Gabarito Preliminar prova OBJETIVA: www.ifmg.edu.br/portal/betim/ ou www.ifmg.edu.br
- III. Pedido e entrada de recursos da prova OBJETIVA a partir de terça-feira 16-12-2014 até a quarta-feira dia 17-12-2014;
- IV. Resultado final da prova OBJETIVA será publicado a partir do dia 22-12-2014, somente serão corrigidas as provas DISCURSIVAS dos vinte primeiros classificados da prova OBJETIVA.

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS	MASSAS ATÔMICAS BASEADAS NO ISÓTOPO DO CARBONO 12	(0)	13 14 15 16 17	A) (III A) (IV A) (V A) (VIA) (VII A) (A)	N° Atômico ← 1 8 6 7 8		Massa Atômica ← 1,0 19,0 19,0	2 4 5 6 7 8 9 40 44 49 td		(III B) (IV B) (V B) (VI B) (VII B) (VIII B) (II B) 27,0 28,1 31,0 32,1 35,5	\vdash	a Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	45,0 47,9 50,9 52,0 54,9 55,8 58,9 58,7 63,5 65,4 69,7 72,6 74,9 79,0 79,9	39 40 41 42 43 44 45 46 47 48 49 50		88,9 91,2 92,9 95,9 95,9 (97,9) 101,1 102,9 106,4 107,9 112,4 114,8 118,7 121,8 127,6 126,9	57 * 72 73 74 75 76 77 78 79 80 81 82	La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi	138,9 178,5 180,9 183,8 186,2 190,2 192,2 195,1 197,0 200,6 204,4 207,2 209,0 (209) (210)	89 ** 104 105 106 107		(227) (261) (262) (266) (264) (277) (268) (271)
								~			21	Sc	45,0	39			* 75			_		_
			2	(H A)	4	Be	0'6	12	Ma	24,3	20	Ca	40,1	38	Š	9,78	99	Ba	137,3	88	Ra	(526)
	-	(I A)	-]	C 5:	e	:-	6'9	11	Z	23,0	19	エ	39,1	37	В	85,5	55	S	132,9	87	Ŧ	(223)
			•	-		%			ကိ			\$			ວິ			ô			20	

			-
71	Lu 175,0	103	Lr (262)
70	Yb 173,0	102	No (259)
69	Tm 168,9	101	Md (258)
89	Er 167,3	100	Fm (257)
29	Ho 164,9	66	ES (252)
99	Dy 162,5	86	Cf (251)
65	Tb 158,9	26	BK (247)
64	Gd 157,3	96	Cm (247)
63	Eu 152,0	95	Am (243)
62	Sm 150,4	94	Pu (244)
61	Pm (145)	93	Np (237)
09	Nd 144,2	92	238,0
59	Pr 140,9	91	Pa (231)
58	Ce 140,1	06	Th 232,0
		-	

Dados: $h = 6,626 \times 10^{-34} \text{ J.s}$; $R_H = 2,179 \times 10^{-18} \text{ J}$; $N_A = 6,02 \times 10^{23}$; $c = 3,00 \times 10^8 \text{ m.s}^{-1}$; $E = -R_H(1/n^2)$;

1) Apropriando de seus postulados, usando as equações clássicas de movimento e as interações entre cargas elétricas, Bohr calculou as energias correspondentes a cada órbita permitida para o átomo de hidrogênio.

Considere que ocorreu uma transição eletrônica no átomo de hidrogênio de n = 1 para o infinito.

a) A energia de transição será	
() absorvida	() emitida
Justificativa:	
b) Para as transições eletrônicas no átomo	o de hidrogênio n = 1 e n = ∞ determine a
b) Para as transições eletrônicas no átomo freqüência e o comprimento de onda.	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a
	o de hidrogênio n = 1 e n = ∞ determine a

2) Um caminhão carregado com 5.000 L de ácido sulfúrico concentrado (96 %m/m; densidade = 1,84 g.cm⁻¹) tombou numa rodovia próxima ao leito de um rio derramando parte de sua carga no asfalto.

Para evitar maiores prejuízos ao meio-ambiente, o Técnico em Química responsável pela carga sugeriu jogar no local, e sobre o ácido derramado, uma substância química para neutralizar o seu efeito. Ele dispunha dos seguintes sais: sulfato de alumínio, carbonato de cálcio, acetato de amônio e cloreto de potássio.

a) Dentre os sais disponíveis, INDIQUE o mais adequado para este fim. Justifique a sua resposta.
Indicação:
Justificativa:
 b) ESCREVA a equação química balanceada da reação de neutralização do ácido sulfúrico pelo sal.

c) **DETERMINE** a massa do sal, em quilogramas, necessária para neutralizar todo o ácido contido no caminhão. Deixe os cálculos registrados de modo a explicitar o seu raciocínio.

assa do sal em quilograma:	
álculos:	

3) A reação química, em solução aquosa, entre os íons bromato (BrO₃⁻) e brometo (Br⁻) pode ser representada pela equação química:

$$BrO_3^-(aq) + 5Br^-(aq) + 6H_3O^+(aq) \rightarrow 3Br_2(aq) + 9H_2O(l)$$

A tabela seguinte mostra quatro experimentos que foram realizados para investigar a velocidade dessa reação.

	Concentraç	ão inicial (mol.l	Velocidade	
Experimento	BrO ₃	Br ⁻	H ₃ O ⁺	(mol.L ⁻¹ .s ⁻¹)
1	0,10	0,10	0,10	1,2x10 ⁻³
2	0,20	0,10	0,10	1,2x10 ⁻³ 2,4x10 ⁻³
3	0,10	0,30	0,10	3,5x10 ⁻³ 5,5x10 ⁻³
4	0,20	0,10	0,15	5,5x10 ⁻³

a) **DETERMINE** a ordem da reação para cada reagente e a ordem total da reação.

b) ESCREVA a le velocidade (k).	i de velocidade c	la reação e de	termine o valor	da constante da

- 4) A facilidade com que os elétrons podem ser removidos de um átomo é um indicador importante do comportamento químico dele. A energia de ionização é a menor energia necessária para remover o elétron de um átomo ou íon gasoso.
- a) Com base nessas informações, JUSTIFIQUE porque a primeira energia de ionização dos átomos tende a aumentar no mesmo período em uma tabela periódica, da esquerda para a direita.

período são sut	ades no admenic tis, mas podem s ação do Be (beríl	ser explicadas	. EXPLIQUE	zação dentro de então porque :)).	e um dad a primeir

- 5) Considere o composto 2-butanol.
- a) **REPRESENTE** as fórmulas estruturais dos enantiômeros, segundo o sistema R e S. Ao representar as estruturas mostre as disposições espaciais das ligações entre átomos que diferenciam os enantiômeros R e S.

Enantiômero R	Enantiômero S

accompanie O butanal	Torritala	Collutarai	piaria	uc	uiii	130111610	Constitucional	uo
composto 2-butanol.								

6) A titulometria de precipitação inclui vários métodos analíticos. Um dos mais difundidos é o de Mohr, método argentimétrico que emprega, como indicador, uma solução de íons cromato. Um dos requisitos deste método é o ajuste de pH, da solução a ser titulada, entre 6,5 e 10.

CITE duas justificativas do requisito de controle de pH para essa titulação.		

7) A amostragem é u dois fatores que deter	ma das etapas n minam a massa o	nais importantes de amostra bruta	de uma análise a ser coletada.	química. CIT

8) O uso d erro alcalin	e eletrodos de lo explica poss	vidro em íveis desv	Química Analíti ios nas medidas	ca pode apr s de pH.	esentar alg	uns erros.	0
	sucintamente o que explica o		do conhecimer ino.	ntos sobre	equilíbrio	químico,	0

9) A Espectrometria de Absorção Atômica pode usar a chama ou o forno de grafite para atomização do analito.

Cite uma **VANTAGEM** e uma **DESVANTAGEM** do uso de forno de grafite em relação ao uso da chama nas medidas experimentais em absorção atômica.

Vantagem:	
vantagem.	
Documentagem:	
Desvantagem:	

- 10) Abaixo são apresentados nove textos referentes ao Ensino a Distância (EaD) e em cada sentença existe uma ou duas lacunas (são doze no total). Há também listadas abaixo vinte palavras/frases enumeradas de um a vinte. Escreva o número da resposta (palavras/frases) que melhor se encaixa em cada lacuna. Somente um único número deve ser escrito em cada lacunas. Não há repetição das respostas. O fato de todas (palavras/frases) estarem com letras em maiúsculo não é ponto determinante (ortográfico) se a mesma é colocada no início, meio ou fim da frase, deve-se considerar que o sentido da sentença seia verdadeiro.
- 1- A DEPENDÊNCIA TECNOLÓGICA:
- 2- O FEEDBACK:
- 3- OS SOFTWARES DE DESENVOLVIMENTO;
- 4- A QUALIDADE;
- 5- A INSTITUIÇÃO DE ENSINO;
- 6- FULL:
- 7- O MINISTÉRIO DA EDUCAÇÃO DO BRASIL (MEC);
- 8- O MOODLE;
- 9- SCORM;
- 10- A UNIÃO:
- 11- A PRESENÇA;
- 12- E-LEARNING:
- 13- DE APRENDIZAGEM;
- 14- 2004;
- 15- OS AMBIENTES VIRTUAIS DE APRENDIZAGEM (OS AVAS);
- 16- OFF-LINE:
- 17- O EaD (ENSINO A DISTÂNCIA);
- 18- ON-LINE;
- 19- A UNIVERSIDADE ABERTA DO BRASIL (UAB);
- 20- LMS (LEARNING MANAGEMENT SYSTEM);

para ser utilizado em si Federal de Pernambuco	emas Ead, igual ao software livre Amadeus da Universidado · UFPE.
porque o acesso e conf também o conheciment estão completamente	ejudica o desenvolvimento e implementação dos cursos EaD cimento destas tecnologias utilizadas para facilitar o ensino e dos professores e desenvolvedores a respeito de seu uso ja ifundidas, não só no Brasil, como em todo Mundo. Un e utilização é o software de desenvolvimento MOODLE.
Educação	: realizada obrigatoriamente com Internet como meio de

_____ é um exemplo de sistema informatizado gratuito de _

troca de informações, pode ser utilizada de forma síncrona ou assíncrona. Tem como características mais enfáticas a velocidade na troca de informações, entre alunos e professores a fim de melhorar o grau de interatividade de aprendizado das aulas.

A versão atual do SCORM é a versão 1.4, também conhecida como SCORM

Continuação da questão 10

A troca de informações, dúvidas do aluno através de CHAT, discussão sobre o tema a ser estudado e fóruns entre professores e alunos são fundamentais. proporcionam o elemento chave aos cursos de EaD não só por oferecerem espaços para a disponibilização dos materiais didáticos, como também a estrutura de interação de aprendizado sem necessitar fisicamente de um lugar para que o aluno venha obter o material de aprendizado.
Em geral sobre o EaD (Ensino a distância), o responsável direto por sua aplicação,, foca sua aplicação e investimentos através de dois programas: um no ensino médio (E-Tec Brasil) e outro para o nível superior, Infelizmente a demanda de vagas não acompanhou o crescimento da população, ressalta-se a necessidade de criação de novos cursos técnicos, superiores e de pós-graduação.
A não existência física de um professor nas aulas práticas sem dúvida nenhuma gera uma falha de aprendizado, além do que das aulas dos cursos à distância deixam a desejar em inúmeras instituições, mesmo nas melhores equipadas com sistemas informatizados e com excelentes profissionais de ensino. Ainda não se sabe ao certo, mas este é modelo de ensino caminha em aperfeiçoamento constante, e para atingir o mesmo respeito dos cursos presenciais poderá levar anos.
Numa esfera superior governamental, regulamentará os requisitos para a realização de exames e registro de diplomas relativos a cursos de educação à distância. Este modelo será oferecido por instituições especificamente credenciadas. As normas para produção, controle e avaliação de programas de educação à distância e a autorização para sua implementação, caberão aos respectivos sistemas de ensino, podendo haver cooperação e integração entre os diferentes sistemas.
O padrão (Sharable Content Object Reference Model) é uma coleção de especificações que permitem interoperabilidade, acessibilidade e usabilidade de conteúdo de E-LEARNING. Desenvolvido nos Estados Unidos hoje este padrão para desenvolvimento é gerenciado pela ADL que determina seu desenvolvimento.